Professional-Data-Engineer試験無料問題集「Google Certified Professional Data Engineer 認定」

You are designing a system that requires an ACID-compliant database. You must ensure that the system requires minimal human intervention in case of a failure. What should you do?

解説: (GoShiken メンバーにのみ表示されます)
You are selecting services to write and transform JSON messages from Cloud Pub/Sub to BigQuery for a data pipeline on Google Cloud. You want to minimize service costs. You also want to monitor and accommodate input data volume that will vary in size with minimal manual intervention. What should you do?

Your company needs to upload their historic data to Cloud Storage. The security rules don't allow access from external IPs to their on-premises resources. After an initial upload, they will add new data from existing on-premises applications every day. What should they do?

You are building new real-time data warehouse for your company and will use Google BigQuery streaming inserts. There is no guarantee that data will only be sent in once but you do have a unique ID for each row of data and an event timestamp. You want to ensure that duplicates are not included while interactively querying dat a. Which query type should you use?

解説: (GoShiken メンバーにのみ表示されます)
You currently have a single on-premises Kafka cluster in a data center in the us-east region that is responsible for ingesting messages from IoT devices globally. Because large parts of globe have poor internet connectivity, messages sometimes batch at the edge, come in all at once, and cause a spike in load on your Kafka cluster. This is becoming difficult to manage and prohibitively expensive. What is the Google-recommended cloud native architecture for this scenario?

You create an important report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. You notice that visualizations are not showing data that is less than 1 hour old. What should you do?

You are training a spam classifier. You notice that you are overfitting the training dat a. Which three actions can you take to resolve this problem? (Choose three.)

正解:A,C,F 解答を投票する
You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.
You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

正解:A,C,E 解答を投票する
解説: (GoShiken メンバーにのみ表示されます)
A shipping company has live package-tracking data that is sent to an Apache Kafka stream in real time. This is then loaded into BigQuery. Analysts in your company want to query the tracking data in BigQuery to analyze geospatial trends in the lifecycle of a package. The table was originally created with ingest-date partitioning. Over time, the query processing time has increased. You need to implement a change that would improve query performance in BigQuery. What should you do?

You are testing a Dataflow pipeline to ingest and transform text files. The files are compressed gzip, errors are written to a dead-letter queue, and you are using Sidelnputs to join data You noticed that the pipeline is taking longer to complete than expected, what should you do to expedite the Dataflow job?

You are designing a data mesh on Google Cloud by using Dataplex to manage data in BigQuery and Cloud Storage. You want to simplify data asset permissions. You are creating a customer virtual lake with two user groups:
* Data engineers, which require lull data lake access
* Analytic users, which require access to curated data
You need to assign access rights to these two groups. What should you do?

解説: (GoShiken メンバーにのみ表示されます)
Cloud Bigtable is a recommended option for storing very large amounts of ____________________________?

解説: (GoShiken メンバーにのみ表示されます)
You need to choose a database to store time series CPU and memory usage for millions of computers. You need to store this data in one-second interval samples. Analysts will be performing real-time, ad hoc analytics against the database. You want to avoid being charged for every query executed and ensure that the schema design will allow for future growth of the dataset. Which database and data model should you choose?

解説: (GoShiken メンバーにのみ表示されます)
You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity 'Movie' the property 'actors' and the property 'tags' have multiple values but the property 'date released' does not. A typical query would ask for all movies with actor=<actorname> ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

You need to compose visualizations for operations teams with the following requirements:
Which approach meets the requirements?

You work for a manufacturing company that sources up to 750 different components, each from a different supplier. You've collected a labeled dataset that has on average 1000 examples for each unique component. Your team wants to implement an app to help warehouse workers recognize incoming components based on a photo of the component. You want to implement the first working version of this app (as Proof-Of-Concept) within a few working days. What should you do?

Your United States-based company has created an application for assessing and responding to user actions. The primary table's data volume grows by 250,000 records per second. Many third parties use your application's APIs to build the functionality into their own frontend applications. Your application's APIs should comply with the following requirements:
Single global endpoint
ANSI SQL support
Consistent access to the most up-to-date data
What should you do?

You want to rebuild your batch pipeline for structured data on Google Cloud You are using PySpark to conduct data transformations at scale, but your pipelines are taking over twelve hours to run. To expedite development and pipeline run time, you want to use a serverless tool and SQL syntax You have already moved your raw data into Cloud Storage How should you build the pipeline on Google Cloud while meeting speed and processing requirements?

You want to automate execution of a multi-step data pipeline running on Google Cloud. The pipeline includes Cloud Dataproc and Cloud Dataflow jobs that have multiple dependencies on each other. You want to use managed services where possible, and the pipeline will run every day. Which tool should you use?