Professional-Machine-Learning-Engineer試験無料問題集「Google Professional Machine Learning Engineer 認定」

You recently joined an enterprise-scale company that has thousands of datasets. You know that there are accurate descriptions for each table in BigQuery, and you are searching for the proper BigQuery table to use for a model you are building on AI Platform. How should you find the data that you need?

解説: (GoShiken メンバーにのみ表示されます)
You want to rebuild your ML pipeline for structured data on Google Cloud. You are using PySpark to conduct data transformations at scale, but your pipelines are taking over 12 hours to run. To speed up development and pipeline run time, you want to use a serverless tool and SQL syntax. You have already moved your raw data into Cloud Storage. How should you build the pipeline on Google Cloud while meeting the speed and processing requirements?

解説: (GoShiken メンバーにのみ表示されます)
You work at a bank. You need to develop a credit risk model to support loan application decisions You decide to implement the model by using a neural network in TensorFlow Due to regulatory requirements, you need to be able to explain the models predictions based on its features When the model is deployed, you also want to monitor the model's performance overtime You decided to use Vertex Al for both model development and deployment What should you do?

解説: (GoShiken メンバーにのみ表示されます)
You trained a model, packaged it with a custom Docker container for serving, and deployed it to Vertex Al Model Registry. When you submit a batch prediction job, it fails with this error "Error model server never became ready Please validate that your model file or container configuration are valid. There are no additional errors in the logs What should you do?

解説: (GoShiken メンバーにのみ表示されます)
You are building a TensorFlow model for a financial institution that predicts the impact of consumer spending on inflation globally. Due to the size and nature of the data, your model is long-running across all types of hardware, and you have built frequent checkpointing into the training process. Your organization has asked you to minimize cost. What hardware should you choose?

解説: (GoShiken メンバーにのみ表示されます)
You recently used XGBoost to train a model in Python that will be used for online serving Your model prediction service will be called by a backend service implemented in Golang running on a Google Kubemetes Engine (GKE) cluster Your model requires pre and postprocessing steps You need to implement the processing steps so that they run at serving time You want to minimize code changes and infrastructure maintenance and deploy your model into production as quickly as possible. What should you do?

解説: (GoShiken メンバーにのみ表示されます)
You have trained a model on a dataset that required computationally expensive preprocessing operations. You need to execute the same preprocessing at prediction time. You deployed the model on Al Platform for high- throughput online prediction. Which architecture should you use?

解説: (GoShiken メンバーにのみ表示されます)
You want to train an AutoML model to predict house prices by using a small public dataset stored in BigQuery. You need to prepare the data and want to use the simplest most efficient approach. What should you do?

解説: (GoShiken メンバーにのみ表示されます)
You are developing a custom TensorFlow classification model based on tabular data. Your raw data is stored in BigQuery contains hundreds of millions of rows, and includes both categorical and numerical features. You need to use a MaxMin scaler on some numerical features, and apply a one-hot encoding to some categorical features such as SKU names. Your model will be trained over multiple epochs. You want to minimize the effort and cost of your solution. What should you do?

解説: (GoShiken メンバーにのみ表示されます)
You are working on a binary classification ML algorithm that detects whether an image of a classified scanned document contains a company's logo. In the dataset, 96% of examples don't have the logo, so the dataset is very skewed. Which metrics would give you the most confidence in your model?

解説: (GoShiken メンバーにのみ表示されます)
You are an ML engineer at a manufacturing company You are creating a classification model for a predictive maintenance use case You need to predict whether a crucial machine will fail in the next three days so that the repair crew has enough time to fix the machine before it breaks. Regular maintenance of the machine is relatively inexpensive, but a failure would be very costly You have trained several binary classifiers to predict whether the machine will fail. where a prediction of 1 means that the ML model predicts a failure.
You are now evaluating each model on an evaluation dataset. You want to choose a model that prioritizes detection while ensuring that more than 50% of the maintenance jobs triggered by your model address an imminent machine failure. Which model should you choose?

解説: (GoShiken メンバーにのみ表示されます)
You work for an online publisher that delivers news articles to over 50 million readers. You have built an AI model that recommends content for the company's weekly newsletter. A recommendation is considered successful if the article is opened within two days of the newsletter's published date and the user remains on the page for at least one minute.
All the information needed to compute the success metric is available in BigQuery and is updated hourly. The model is trained on eight weeks of data, on average its performance degrades below the acceptable baseline after five weeks, and training time is 12 hours. You want to ensure that the model's performance is above the acceptable baseline while minimizing cost. How should you monitor the model to determine when retraining is necessary?

解説: (GoShiken メンバーにのみ表示されます)
You are an ML engineer at a bank. You have developed a binary classification model using AutoML Tables to predict whether a customer will make loan payments on time. The output is used to approve or reject loan requests. One customer's loan request has been rejected by your model, and the bank's risks department is asking you to provide the reasons that contributed to the model's decision. What should you do?

解説: (GoShiken メンバーにのみ表示されます)