A. Performing an unconditional operation on a qubit
B. Implementing a controlled NOT operation
C. Applying a controlled phase shift operation
D. Applying an unknown quantum operation
A. Information on quantum job configurations
B. Configuration settings for Qiskit libraries
C. Details about the user's system settings
D. Information about the quantum device's operational configuration
A. Quantum entanglement mapping
B. Quantum error correction
C. Statistical analysis
D. Quantum gate optimization
A. random_get_hermitian(2)
B. random_get_hermitian_operator(2)
C. random_hermitian_operator(2)
D. random_hermitian(2)
A. qc.h(0)
B. qc.rx(math.pi, 0)qc.rz(math.pi, 0)
C. qc.ry(math.pi / 2, 0)qc.x(0)
D. qc.rx(math.pi, 0)
E. qc.h(0)qc.x(0)
A. backend = BasicAer.get_back_qasm_simulator()
B. backend = BasicAer.get_backend('qasm_simulator')
C. backend = BasicAer.get_back('qasm_simulator')
D. backend = BasicAer.QasmSimulatorPy()
A. Pauli-Z gate
B. Hadamard gate
C. T gate
D. Reset gate
A. 1/√2 |01> + 1/√2|10>
B. 1/√2 |00> + 1/√2|10>
C. 1/√2 |11> + 1/√2|10>
D. 1/√2 |00> - 1/√2|11>
E. 1/√2 |00> + 1/√2|11>
F. 1/2|00> + 1/2|01>+ 1/2|10> - 1/2|11>
A. It enables the simultaneous representation of multiple states
B. It limits the capacity for storing information in qubits
C. It allows for the storage of classical bits in quantum systems
D. It ensures deterministic outcomes in quantum computations
A. The speed of quantum computations
B. The complexity of quantum algorithms
C. The number of qubits in a quantum circuit
D. The overall performance and error rates of quantum hardware
A. 0.8536
B. 1.0
C. 0.1464
D. 0.5
A. backend = BasicAer.get_back_unitary_simulator()
B. backend = BasicAer.get_back('unitary_simulator')
C. backend = BasicAer.get_backend('unitary_simulator')
D. backend = BasicAer.UnitarySimulatorPy()